riIsCurcC

Andres Moreno
moreno@riscure.com

Eloi Sanfelix Gonzalez
eloi@riscure.com
@esanfelix

Shout-out to the team! FISCUrC

<
‘)..
\ tk
1} -
§ -
% A
)

RHmMe2 you say? FISCUrQC

Embedded hardware CTF

« Usual types of challenges
- Side Channel Analysis
* Fault Injection

 Other PCB-related
challenges

(Plojef “Olves c.knllem‘e.
and eesive board

—

Riscure ndg
RS koarde

oL
l ear lj Noveanloer 16

KP‘OL\}Q.{‘ fe_a\ slecs, board)

l Q.O.‘“j Mo venuloes” 2010

fR‘QVO k. kg_:j S

/A

load dﬁallcnje o
board

Novequloer — }”\W“j
Lol EN:
. _Ad

s

Townlood an

CV\M?S r:kd dﬂﬂ[lﬁn je

persona lived

wlj Nowr tumboer wol(,

aq)o[vg_ fe dnl[wag

p SIS

B en

Su gk PR
e 8 ,f.' bece
& s

BRI r LR
Q t wad dad Za52 ‘.- %

gonst z:’x_ﬂ?u%!% :"irl' .
&Qz Agise 2N
.- 2

Sy L ™
LAAEBEO50

;'_.Ii;-;pooxv.éo?g?: ‘
T \/.I == +

” - a .
R A BN g
229% APREN R
3L %9

. ~
” -
% 7
~ % o
il 5 \\:‘v' s
Sanvinen o 1o e w oS o S
e i : 2 A

(Plojef “Olves c.knllem‘e.
and eesive board

—

Riscure ndg
RS koarde

oL
l ear lj Noveanloer 16

KP‘OL\}Q.{‘ fe_a\ slecs, board)

l Q.O.‘“j Mo venuloes” 2010

fR‘QVO k. kg_:j S

/A

load dﬁallcnje o
board

persona lived

wlj Nowr tumboer wol(,

aq)o[vg_ fe dnl[wag

Reverse Engineering - 400pts

Fridge)lT

A senior technical manager of a fridge manufacturer demanded the ability to update the firmware in
their new product line (we need to meonitor and control the temperature, right?) of all deployed devices
over the air and without user interaction. This way, the manufacturer could improve the user

experience by providing firmware updates, even when the fridge is 1 or 2 years old.

It turned out that the CPU that comes with the fridges does not allow self-upgrading the firmware, so

the developers built a VM for the fridge software which at that time was just a few lines of code.

Incidentally, half of the development and test team was fired 2 months after releasing the new product

line.

A crafty customer has been able to reverse engineer the software and programmed the fridge with
different software. His goal was to build a digital safe, but the guy claims not being able to make the

application small enough to fit inside the VM. However, to be sure we ask you to check whether this is

Correct.

Are you able to crack the password? We have been able to extract the full firmware image of a slightly

different fridge and a memory dump of their fridge. We hope this is enough...

Note: The flag is in a different format than usually...

= Challenge
B Firmware bin

k= memory.dmp

Challenge setup Fiscure

<) VM
VM data/state
fetch-decode- Password
execute loop VM — compare
code logic
AVR program AVR

memory RAM

FridgeJIT console - disassembly* f1scure

| FridgelIT Console]

| >> 0000: 05002500 MOVH r0 #2560 | | RO: GOOOABOO R4: AOOEEOOO |
0004: 0400203a MOVL ro #203a R1: 0BOOOAS4 R5: 0OAOOOOL |
008: 0100 PUSH ro R2: 000011 SP: 0EAOEO1R |
00: 04006777 MOVL ro #6777 | | Z: O C: 6

Appeared after pressing ~*C enough times...
or when loading bytecode to Weird Machine

*Some unsupported opcodes!

After a bit of reversing...

» A few check routines, 4 bytes at a time
» Simple arithmetic for each of them, for example:
rol(input,17)*"0x3d6782a5 == 0x5dd53c4f

» Flag easily recovered from these expressions

riISsCurce

13

= - Talap
Uther - 400pts

Hide & Seek

So you found the password last time? This time it got a little bit harder. Instead of hiding it in the VM, it

is somewhere else on the device. Are you able to find it?

H{Zhallenge

This time you had to read it out
from memory!

Flawed opcode handlers FISCUrG

#tdefine GET_REG(vm,r) (vm->gpr[r])

#tdefine XOR_REG(vm,r,v) (vm->gpr[r] "= v)
#tdefine AND _REG(vm,r,v) (vm->gpr[r] &= v)
#define OR_REG(vm,r,v) (vm->gpr[r] |= v)

#define NOT_REG(vm,r} (vm->gpr[r] = ~wvm->gpr[r])

'r

|
Obvious lack of bound checks!

Exploitation?

gpr(8]
flags
data > VM data
datalen
code > VM
bytecode
codelen

Plan: modify data to get arbitrary read/write

using LOAD/S

ORE Instructions

riISsCurce

Payload to dump all SRAM Flscure

det read_all():
rd = 0x100 << 8, r5 = @x100 (1 << 8)
X = set _reg(4, 6x00000008) + movl(5, B8x168)
looptet = len(x)/2

zero out the address

+= xor(2,8) + andr(8§,0)

XOR with reg 4, contains current addr
+= xor(8, 4)

Now read into R3

+= xor(3, 3)

+= load(3, @) + out(3)

Inc address by 8x108, so goes to next byte
+= add(4, 5)

+= movl(/, looptgt-4)

return x

M XA H X X X H X HHF

SRAM dump reveals flag

Exploitation - 400pts
The Weird Machine

Damn fridges. It seems there is no end to the problems they bring. And this time time it got even more

difficult. | guess you already know in which direction this goes, right?

H'El".allenge

v

Memory dump not enough,
need code execution!

Arbitrary write to code exec? FISCuUre

- Standard ROP
1. Find a stack pivot
2. Replace opcode handler function pointer
3. Trigger

« ROP a-la AVR:

1. Write ROP chain to memory
2. Write address to SP (0x5D:0x5E)

Unexpected flaw (HydraBus, Balda) ISCUrE

vold do_call _reg(vm_state *wm) {
uint8_t reg = GET_REGA(vm);

//Check stack pointer validity
if(check_ptr({vm, GET_REG(vm,ESP))) {
SUB_REG(vm, ESP, 4);

//First we push the return address
SET_DATA(vm, GET_REG(vm,ESP), GET_REG(vm,EIP) + get_ins_size(OP_CALL _REG));

//Next we set EIP to the target
SET_REG(vm,EIP,GET_REG(vm,reg));

} else {
usart_print_P(PSTR("Oops!\r\n"));
wait_enter();

vim->Tlags. interrupted = 1;

Stack pointer underflow in CALL if SP=0

Exploitation? riscure

1. Underflow allows modifying code

VM bytecode < and codelen
gpri8] 2. Debugger allows loading new
flags code into code
— data l
datalen
code B Arbitrary write = code execution
codelen

> VM data

Fault Injection - 300pts

Revenge

The same manager that last time demanded field upgradable software is now asking the development

team For an explanation as to why so many users have been able to hack their own fridge. The manager

is also asking the legal department if they could sue every single user, but they responded that users

are free to do as they want with their own equipment.

This is not acceptable, so the manager threatens to fire everybody unless they solve this major issue

before coming Monday. How they resclve it is up to them, as long as it is sorted in the given time frame.

But is the solution sufficient?

Keep in mind that Fi can be risky. If you brick your Arduino the game is over. Hence, you should try this
challenge after you are done with the other challenges.

- Challenge
= example.hex

HSG[UHGH-hE‘H

Authenticated code FISCUrC

\ v Glitch
K1, K2 —> OMAC > Equal? / here!

l l

Boot Fall

Alternative approach (Gijs) FlSCuUre

1. Load example authenticated code

2. Cause fault during execution (voltage glitch)
o VM enters debugger!

3. Load final code through debugger

Alternative approach (HydraBus) FISCUrC

1. Tinker with provided binary blob
o Modify final padding bytes
o Bit-flip different parts

O

2. Find out tail not authenticated - run VM code!

But... how is that possible? FISCUre

vold omac(vold *dest, const void *msg, uintl6_t msglength b,

const void *key){
omac_init(dest); N\\\
while(msglength b>128){
omac_next(msg, key, dest); These are bits!

msg = (uintd _t*)msg +16;
msglength b -= 128;

¥
omac_last(msg, msglength b, key, dest);

unsigned char authenthcate_payload(unsigned char*® app code, uintl6_t len,
uint8_t mac[l6] = {8};
uint8_t key[16] = {Bxac, Ox31, Ox82, Ox0f, Oxdc, Oxf4, Oxf5, Ox43, Bxa
uint8_t kex[16] = {Ox48, Ox43, Ox6d, Ox71, Ox44, Ox5e, Oxc2, Ox11, BxO

omac(mac, app_code, len - 16, key);

N\\

And these were bytes!

I

' - I - = | EM ar Y ; . - = crus Eremm Flha Dar
fe captured a crazy guy aiming a LED at planes passing b e believe he is a spy from the Republic o
/adiya. Your task is to reverse how the device works and extract the keys without analyzing power or
)
alectromagnetic traces
[l P -\.-.I-\.-H.- -\.t [T
000 IUCK rando ernet playe
)
- ' - ok
Jate- This challenae can be solved without Fancy hardware - cle iFvaou Aot the rioht Flaa (key
lote: This challenge can be solved without rancy hardware. You can check if you got the right Flag (key
J -ALE0
by encrypting the input and comparing it against the output
=

you get nuf
e of maximum 16
fransmitted Hn-ru|TH4
wlll remailn secure even
(We hope so).

This board will help
Write @
'|'|'1-|. -l. =
The l-'-s;-.-'

me:

the LED 1s not powerful

enough please aim

junﬂle in no time!
| for help, the message
Thw LED and a secret k
Jjas falls into enemy

fuly.

2

car

Emergency Transmitter FIscure

* Write 16 characters.... LED blinks... that’s it.
* Rigol... Morse Code! (decoder not included)

* Create something to read and interpret the blinking LED

Y' :

U —
N e —
LmA TN ANNCE

Taken from Calle Svensson @ZetaTwo

Abusing the transmitter..

Several thousands attempts were omitted

» At some point, our Input starts a

» But we are also able to corrupt t

* But not always... (Brown)

- riISsCurce

\n BB B0 BB 60 6B B8 ...

\n B8 88 B8 B8 ...

\n 88 88 B8

ppearing in the output (Red)

ne output (Yellow)

Feature 1

* @brief UART receive interruption.
* Adds the received characters to te inBuffer and signals
* when a LF character is received so the command can be

¥ parsed.

ISR{USART_RX_vect)

uint8_t data;
data = UDRB,;

'* CHR_LF signals end of command */
if (data == CHR_LF) {
pos_inbuffer = 8;

parse_flag = 1;

} else if (pos_inbuffer < INBUFFER_LEN) {
inbuffer[pos_inbuffer] = data;

pos_inbuffer++;

riISsCurce

The Iinterrupt is not disabled while processing the input

Feature 2 FlSCUrG

Power ON
»> \n
> 83 @d ... Pressing enter twice yields different outputs,

> \n But is deterministic
da 39 ...

it deterministic?
Reboot
> An The input buffer is used as output buffer
T We saved 16 bytes of RAM!

>>» \n
da 39 ...

Deterministic!

“E““;b 83 8d ... \ The input buffer is used as output buffer

2422 - s the internal state of the cipher

Input Buffer = Qutput Buffer

HydraBus mental process

Exploit (ISCUrC

Input
* Input buffer Is reused for internal state. i
{AddRoundKeyj
- Interruption is not disabled. l-*
. DEA [RoundMagic j
* Not really... we control the value and [SubBytes

position of the fault.
[ShlftRows j%

» Simplified Math.

[Add RoundKeyj
- Inject 00, Sk = Outpuit. !

Output

* Get key by reversing AES key scheduling.

Timing riIsCurc

Input

[jAddRoundKeyj
> 00 00 00 0 | -
Se 4f Od Se 92 b8 8 b el 51 °
Too soon! [RoundMagic]
>> 00 90 00
Se 4f 8d Se
Too latel!
>> 80 00 00 00 | [SubBytes j
80 4f Bd Se 92 b8 87 b el 51 = ¢
Quite right [ShiftRows]
>> 00 90 00
9b 4f 8d Se

(fAddRoundKeyj

:

Output

Exploitation

def

attack(crack byte, delay):
conn.write("ss\n" % (delay,))
rsp = wait prompt({conn)
rsp = rsp.split(]}
rsp = rspl[l:1len{rsp)]
(correct, wrong, too soon, too late) = analize(crack byte, rsp)
1t too soon == True:
too soon = bcolors.WARNING + str{too soon) + bcolors.ENDC
1f t w0 late == True:
oo late = bcolors.WARNING + ::rItDD late) + bcolors.ENDC

(LR E

print{("Correct: %s, Corrupted:§" + bcolors.FAIL + "%s" + bcolors.ENDC +

(correct, wrong, too soonsg tDD late))
print{"ss" % (e,))
return too soon

V. 7 JUinO.CC

. ﬁrdumo HEGA

_< Od‘buu(l} ,___m.p oc m.___.\

riISsCurce

Too late:

Timing is everything FIscure

First Byte
»> 00 90 99 60 00 PP 00 00 0O DO PO 00 00 88 80 00 \n (delay) 00
9b 4f Bd 5e 92 b8 87 fc 9e bb el 51 25 8 8c d&

Time is not enough during AddRoundKey to corrupt 16 bytes
»> 00 00 00 0O 0O PO 60 OO GO0 PO OO OO 0O OO 00 80 ‘\n B0 (delay) 00 B8 ...

25 9e 99 3f 71 86 9 cd c7 79 6 al 6b 84 e6 48

Last Byte
»> B8 B0 B8 e 00 00 00 00 60 6O OO 9O 00 00 ‘\n 60 00 88 ... (delay) 0@
S5e 4f Bd 5e 87 fc 9e bb el 51 25 B 8c 89

* The amount of bytes that can be injected depends on the
processor clock speed and baud rate.

» Challenge was clocked down for this reason.
* However, the last bytes were difficult to obtain.

* Brute forcing may be required

Different Approaches Fiscure

* HydraBus — Common DFA on AES. Tried to attack
AddRoundKey

- Balda — Attack on last add round key + Brute force
* Riscure — Failed normal DFA, attacked last round.

* Nobody? — DFA with hardware

SCA2

riIsCurc

Side Channel Analysis - 100pts
Piece of scake

This is an easy SCA challenge using a cipher implementation without any 5CA or DFA countermeasures.

Find the key used to encrypt and decrypt messages. Please, consider both 5CA and DFA attacks.

To encrypt a message, send the letter ‘e’ followed of 16 bytes. To decrypt a message, send the letter 'd’

Followed of 16 bytes.

= Challenge

ide Channel Analysis - 300pts
Still not scary...

We added a simple countermeasure to the previous challenge.

Will you be able to break it?

= Challenge

SCA2 - Still Not Scary FISCUrQ

16 Bytes AES1287 16 Bytes

* No fancy command line.
 Solution with ChipWhisperer

* Why not Riscure tools? Too easy

Traces Acquisition FIscure

Taken from LiveOverflow @LiveOverflow

Traces Acquisition FIscure

Taken from HydraBus @HydraBus

AnaIySiS riISsCurce

Power Trace View

0.4}

0.2}

0] 2 4 5] 8 1b 12 14 16 18 20 22 24

Sample (kPts.)

0.2F

0.1¢

-0}

Heavy Misaligned

0.2

-2 0 2 4 6 8 1IO 12 14 16 18 20 22 24

Taken from HydraBus @HydraBus

AnaIySiS riISsCurce

» Attack plan (CW Tutorials):
» Align — Resync: Sum-of-Difference
- Attack — HW:SBox output (SCA1)
* Fall

* CW can only capture ~24k points
* Sbox Is out of capture
» Can’t drop unaligned traces?

* New plan:

» Align around key addition — Resync: Sum-of-Difference
» Attack — HW: AddRoundKey Output

Alignment riIscure

Power Trace View

T
0.2
0.1
o i
;. or
a
-0.1
0.2
0 2 4 6 8 1IO 12 14 16 18 20 22 24
Sample (kPts.)
Power Trace View
0.2
2 iy
o I
AR e ‘||H|.\||I
| I I I

0 2 4 6 g 1IO 12 14 16 18 20 22 24
Sample (kPts.)

Alignment Result Fiscure

Power Trace Yiew

-0.03}

-0.04

-0.05}

140 160 180 200 220 240 260 280 3ﬁ0 320 340 360 380 400 420 440 460 480 5é0 520 540 560 580 600 620

Sample (Pts.)

[#.5]

10

Attack - Key Addition

riISsCurce

68 F6 7 A6 4D 18 89 0D 79 33 OF 86 00 D2 96 A8
0.9749 0.9826 0.9873 0.9747 0.9875 0.9672 0.9858 0.9852 0.9843 0.9802 0.9839 0.9732 0.9363 0.9843 0.9690 0.9882
94 09 38 59 B2 E7 76 F2 86 cc F1 79 FF 2D 69 57
0.9749 0.9826 0.9873 0.9747 0.9875 0.9672 0.9858 0.9852 0.9843 0.9802 0.9839 0.9732 0.9363 0.9843 0.9690 0.9882
FO FF 21 BF AB FE 6F FF 9F 2A 00 FF 51 FF 8F SF
0.8853 0.9394 0.8961 0.9177 0.9047 0.9249 0.9030 0.9200 0.9159 0.9199 0.9222 0.9186 0.9182 0.9439 0.8934 0.8869
OF 00 DE 40 54 01 90 00 60 D5 FF 00 AE 00 70 AO
0.8853 0.9394 0.8961 0.91¢7 0.9047 0.9249 0.9030 0.9200 0.9159 0.9199 0.9222 0.9186 0.9182 0.9439 0.8934 0.8869
8C EF FF 00 FF 00 72 14 00 FF E8 7F B7 34 FF AC
0.8768 0.8977 0.8647 0.8851 0.9015 0.9096 0.8937 0.9160 0.8887 0.8905 0.8969 0.9091 0.8779 0.9125 0.8878 0.8748
73 10 00 FF 00 FF 8D EB FF 00 17 80 48 CB 00 53
0.8768 0.8977 0.8647 0.8851 0.9015 0.9096 0.8937 0.9160 0.8887 0.8905 0.8969 0.9091 0.8779 0.9125 0.8878 0.8748
8D 08 20 4E 55 1C FF 04 6E DB OF 9F 50 cA 7E 00
0.8702 0.8559 0.8571 0.8675 0.8625 0.8580 0.8604 0.8728 0.8582 0.8820 0.8826 0.9088 0.8758 0.8380 0.8592 0.8688
72 F7 DF B1 AA E3 00 FB 91 24 Fo 60 AF 35 81 FF
0.8702 0.8559 0.8571 0.8675 0.8625 0.8580 0.8604 0.8728 0.8582 0.8820 0.8826 0.9088 0.8758 0.8380 0.8592 0.8688
D4 D3 39 41 DA EF 6E EA 9E 16 16 71 40 3A 8E 80
0.8392 0.8443 0.8468 0.8584 0.8269 0.8563 0.8541 0.8708 0.8432 0.8699 0.8603 0.8696 0.8691 0.8281 0.8579 0.8688
28 2C c6 BE 25 10 91 15 61 E9 E9 8E BF cs 71 7F
0.8392 0.8443 0.8468 0.8584 0.8269 0.8563 0.8541 0.8708 0.8432 0.8699 0.8603 0.8696 0.8691 0.8281 0.8579 0.8688
F4 93 87 7F 58 08 1A 09 15 D4 6E 91 F7 5C 9E AA
0.8273 0.8339 0.8356 0.8556 0.8198 0.8386 0.8401 0.8421 0.8385 0.8422 0.8594 0.8563 0.8489 0.8018 0.8421 0.8335

Brute Force! FISCUrG

#l/usr/bin/python

from Ir?ptn llphPF import AES

import binascii

plaintext = binascii.a2b hex("A7D961D8083DF362D003A5201C665AB3")
output = thdEull azb hex("FC73ADEF2B116C8B770DA196E60D6454")

def check key(key):
cipher = AES.new(key, AES.MODE ECB)
tmp = cipher.encrypt(plaintext)
if tmp == output:
print("Key found")
print(binascii.b2a_hex(key))
exit(0)

[Ox6b, 0x94]

[Bxf6, GxO9]

[BxcT, Ox38]

[Bxab, @x59]

[Ox4d, Gxb2]

[0x18, Oxe7,

[0xB9, Gx76]

[Ox0d, Oxf2]

[0x79, Ox86]

[D:--. Bxcc]

[Ox0e, BxT1]

[Bx86, Bx79]

[Ox00, OxTf, Bx51, Oxae, Oxb7, Ox48, Ox50, 6xaf)
[0xd2, 0x2d, Oxff, 0x00]
[Bx96, Bx69]

[0xaB, Ox57]

bytel
bytel
byte2
byte3
byted
byte5
byte6
byte7
byted
byted
byteld
bytell

|:|'|l L"'...i_
I:l_'r L'l'...j

byteld

bytels

18 = len(byted)
11 = 18 * len({bytel)

andrestkali-andres: $ python ./bruteforce. py
Key found

Side Channel analysis FISCUre

« SCAIL: The trigger is on the house, no counter measures
« SCAZ2: No trigger, random delays

« SCA3: No trigger, random delays, dummy rounds, anti-
DFA

« SCA3: Countermeasure were added after the
AddRoundKey... ooops

 SCA2 and SCAS3 can be solved the same way.

I

Shout-out — Arls (ISCUrC

Aris Adamantiadis @aris_ada

Shout-out — LiveOverflow

Riscure Embedded Hardware CTF
setup and introduction - rhme2
2,960 views + 2 months ago

CC

-.. . .A: E\ '-;;/,'i' ..“2‘15\ -
Using UART / Serial to interact
with an embedded device -

3,096 views - 2 weeks agc

CC

4

(
Loopback U 8:21

riscure embedded hardware CTF
is over - loopback 0x03
2,389 views - Z weeks ago

SO VIDIVS LN

CC

Taken from LiveOverflow @LiveOverflow

riISsCurce

Start reverse engineering AVR -
Memory Map and 1/0 Registers ...

Z,09%4 VIEWS 3 0ays ago

al ol
‘J '\-4

SHA1 length extension attack on
the Secure Filesystem - rhme2

Ly CC vricst - d 2 2 -
2955 views - 1 week ago

CC

Shout-out - HydraBus FISCUre

PR 2 nonoonwusGND XTHI 1CIND D¥ault Jumper

® 0 0 u XTﬂLZ(OUT) -8

HsL gh @

- Pﬁphﬁ PA3 PA2 PAL PAQ)
for HudraBus / Chiplhisperer ?

LD Rev@ 26 Dec 2016 B.VERNOUX *
L RHRE2 hiipi//rhme.riscure.con/challenges
Based on CNTARG-NOTDUINO-02

o o @ o wwuNevAE.com J-,‘. (

Taken from HydraBus @HydraBus

Shout-out - MrMacete FISCUrC

MOVL R3,
MOVL RS,
CALL R5
MOVL R5,
CALL R5
INZ

@x146 ; [d]
MOVL R5,
CALL R5
INZ

0x14f ; [e]
MOVL RS,
CALL R5
INZ

% Winners | .
Hydra j

Conclusions FISCUre

o Fewer players than boards, but high skills and motivation
* Long-running contest gives a chance to individuals

o Preparing and running the CTF was fun for the team

o But earlier prep required for next year
* You can always do more testing!
« There are always unintended solutions ®
- Delivery to some parts of the world is SLOW

o Good feedback received
« Also improvement points for the challenges ;-)

Want to know more? FISCUrC

1. Follow @riscure for updates
o News on RHMe3 (~ November 2017)
o Other embedded security news

2. Check out https://github.com/riscure/rhme-2016
o Challenge binaries and code so you try them out
o Links to write-ups in case you get stuck

https://github.com/riscure/rhme-2016
https://github.com/riscure/rhme-2016
https://github.com/riscure/rhme-2016

We’re hiring!! Get in touch if you’re interested!

Eloi Sanfelix Gonzalez Andres Moreno
eloi@riscure.com moreno@riscure.com
@esanfelix

